Preliminary communication

NEW SYNTHETIC PATHWAYS IN DICYCLOPENTADIENYLTANTALUM CHEMISTRY

MALCOLM L.H. GREEN and JOEL J.E. MOREAU Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (Great Britain) (Received September 8th, 1978)

Summary

The dihalides $[Ta(\eta-C_5H_5)_2X_2]$ (X = Cl, Br) are prepared in 80% yield by treatment of TaX_5 with $Sn(C_5H_5)$ -n-Bu₃. The trihydride $[Ta(\eta-C_5H_5)_2H_3]$ is formed in 42% yield from $[Ta(\eta-C_5H_5)_2Cl_2]$ and $[NaAlH_2(OCH_2CH_2OCH_3)_2]$. The trihydride with butyllithium gives a tantalum-lithio derivative which reacts with benzyl chloride giving $[Ta(\eta-C_5H_5)_2(CH_2Ph)Cl]$.

Trialkyl(cyclopentadienyl)tin compounds have been found to provide convenient synthetic routes to the new monocyclopentadienyl halides of niobium and tantalum $[M(\eta-C_5H_5)X_4]$ (M = Nb, Ta; X = Cl, Br) [1, 2]. Also, an improved route to dicyclopentadienyltantalum dichloride has been recently described by treating a toluene suspension of $[Ta(\eta-C_5H_5)Cl_4]$ with $[AlEtCl_2]_2$ [3].

Here we report that trialkyl(cyclopentadienyl)tin compounds can provide direct access to dicyclopentadienyltantalum complexes in very high yields. When dichloromethane suspensions of the tantalum pentahalides: TaX_5 (X = Cl, Br) are treated with 3 equivalents of $Sn(C_5H_5)$ -n-Bu₃ at room temperature deep green solutions are obtained. Addition of toluene and concentration of these solutions give green crystals of $[Ta(\eta-C_5H_5)_2X_2]$ (I, X = Cl, yield 87%; II, X = Br, yield 84%). The yield of compound I is considerably higher than in the original method [4] and quantities of I as high as 35 g may be conveniently prepared in a single experiment.

Treatment of a suspension of $[Ta(\eta-C_5H_5)X_2]$ in toluene with $[NaAlH_2(OCH_2-CH_2OCH_3)_2]$ gave in 42% yield the trihydride $[Ta(\eta-C_5H_5)_2H_3]$ (III). In a typical experiment 7.2 g of $[Ta(\eta-C_5H_5)_2Cl_2]$ suspended in 500 cm³ of dry toluene at 0°C were treated dropwise by a benzene solution containing 12.2 g of $[NaAlH_2-(OCH_2CH_2OCH_3)_2]$. The reaction mixture was then hydrolysed. Sublimation of the reddish solid obtained, at 105°C under 10⁻³ mmHg gave 2.5 g of white crystals of III. This reaction represents a reliable and reproducible method of synthesising the elusive $[Ta(\eta-C_5H_5)_2H_3]$ [5].

Treatment of the trihydride III with butadiene in toluene at 80°C for 6 h

gives green crystals of the previously described [4] (1-methylallyl) dicyclopentadienyltantalum (IV) in 56% yield.

When toluene solutions of III are treated with 1 equivalent or an excess of n-butyllithium, an orange solution is formed which deposits orange-yellow needles (V) after a few minutes. The crystals of V are extremely reactive towards oxygen and moisture. Hydrolysis of V reforms III quantitatively. Compound V is insoluble or decomposed in most organic solvents. The infrared spectrum of V shows a band characteristic of cyclopentadienyl groups and a broad band at 1590 cm⁻¹ which can be assigned to ν (Ta-H). We assume V is a tantalum-lithio derivative analogous in type to the compound [W(η -C₅H₅)₂HLi]₄ [6].

The presence of at least one tantalum—lithium bond in V can be deduced on the basis of the reaction of V with benzyl chloride. Treatment of a toluene suspension of V at -80°C with an excess of benzyl chloride gives black crystals of the new compound $[Ta(\eta - C_5H_5)_2(CH_2Ph)Cl]$ (VI) in 66% yield. Compound VI has been characterized by elemental analysis (Found C, 47.95; H, 4.1; Cl, 7.95. $C_{17}H_{17}ClTa$ calcd.: C, 47.65; H, 3.9; Cl, 8.1%], infrared and the ESR spectrum ((g) 1.965, A_{iso} 115 G).

We thank the Royal Society and the C.N.R.S. for an exchange fellowship (to J.J.E.M.).

References

- 1 M.J. Bunker, A. DeCian and M.L.H. Green, J. Chem. Soc. Chem. Commun., (1977) 59.
- 2 R.J. Burt, J. Chatt, G.J. Leigh, J.H. Teuben and A. Westerhof, J. Organometal. Chem., 129 (1977) C33.
- 3 J.C. Daran, K. Prout, A. De Cian, M.L.H. Green and N. Siganporia, J. Organometal. Chem., 136 (1977) C4.
- 4 A. van Baalen, C.J. Groenenboom and H.J. de Liefde Meijer, J. Organometal. Chem., 74 (1974) 245.
- 5 M.L.H. Green, J.A. McCleverty, L. Pratt and G. Wilkinson, J. Chem. Soc., (1961) 4854.
- 6 B.R. Francis, M.L.H. Green, N.T. Luong-Thi and G.A. Moser, J. Chem. Soc. Dalton, (1976) 1339.